Tekanan Osmotik Larutan

Tekanan Osmotik Larutan – Dalam tulisan ini akan dijelaskan terlebih dahulu mengenai pengertian tekanan osmosis, dari sana muncul pengertian tekanan osmotik larutan. Untuk sekedar pemahaman anda juga diberikan contoh perhitungan tekanan osmotik larutan. Setelah itu akan dipaparkan aplikasi dari tekanan osmotik. Untuk lebih jelasnya simak artikel mengenai tekanan osmotik larutan berikut ini.
1. Pengertian Osmosis. Osmosis adalah proses perpindahan larutan yang memiliki konsentrasi rendah melalui membran semipermeabel menuju larutan yang memiliki konsentrasi lebih tinggi hingga tercapai kesetimbangan konsentrasi. Pada proses osmosis, molekul-molekul pelarut bermigrasi dari larutan encer ke larutan yang lebih pekat hingga dicapai keadaan kesetimbangan konsentrasi di antara kedua medium itu (lihat Gambar 1.7).
Proses osmosis
Gambar 1.7 Proses osmosis
Tekanan yang diterapkan untuk menghentikan proses osmosis dari larutan encer atau pelarut murni ke dalam larutan yang lebih pekat dinamakan tekanan osmotik larutan, dilambangkan dengan π. Tekanan osmotik larutan berbanding lurus dengan konsentrasi molar zat. Dalam bentuk persamaan dapat ditulis sebagai berikut.
π ≈ M atau π = k M
k adalah tetapan kesetaraan yang bergantung pada suhu. Untuk larutan encer harga k sama dengan RT, di mana R tetapan gas dan T adalah suhu mutlak. Oleh karena kemolaran memiliki satuan mol per liter larutan maka tekanan osmotik larutan dapat dinyatakan sebagai berikut.



Keterangan:
π =Tekanan osmotik
M =Molaritas larutan
R = Tetapan gas (0,082 L atm mol–1K–1)
T =Suhu (K)

Contoh Menentukan Tekanan Osmotik Larutan
Berapakah tekanan osmotik larutan yang dibuat dari 18 g glukosa yang dilarutkan ke dalam air hingga volume larutan 250 mL? Diketahui suhu larutan 27°C dan R = 0,082 L atm mol–1 K–1.
Jawab:
Jumlah mol C6H12O6

Tekanan osmotik larutan: π=(n/V) RT
π = 0,1mol/0,25L × 0,082 L atm mol–1 K–1× 300 K
= 9,84 atm
Jadi, tekanan osmotik larutan sebesar 9,84 atm
Dengan diketahuinya tekanan osmotik suatu larutan maka massa molekul relatif dari zat terlarut dapat ditentukan. Hal ini dilakukan dengan cara menata ulang persamaan tekanan osmotik menjadi:


Contoh Menentukan Massa Molekul Relatif dari Tekanan Osmotik
Sebanyak 0,01 g protein dilarutkan ke dalam air hingga volume larutan 25 mL. Jika tekanan osmotik larutan sebesar 1,25 mmHg pada 25°C. Hitunglah Mr protein.
Jawab:
Ubah besaran ke dalam satuan SI.
π =1,25 mmHg x (1 atm/760 mmHg) = 0,00164 atm
Mr protein = {0,01g/(0,00164 atm) (0,025L)} (0,082 L atm mol–1 K–1)(298K)
= 5.960 g mol–1
Jadi, massa molekul relatif protein adalah 5.960.

2. Aplikasi Tekanan Osmotik. Jika dua buah larutan yang dipisahkan oleh membran semipermeabel memiliki tekanan osmotik sama, kedua larutan tersebut isotonik satu dengan yang lainnya. Jika salah satu larutan memiliki tekanan osmotik lebih besar dari larutan yang lain, larutan tersebut dinamakan hipertonik. Jika larutan memiliki tekanan osmotik lebih kecil daripada larutan yang lain, larutan tersebut dinamakan hipotonik. Tekanan osmosik memainkan peranan penting dalam sistem hidup. Misalnya, dinding sel darah merah berfungsi sebagai membran semipermeabel terhadap pelarut sel darah merah. Penempatan sel darah merah dalam larutan yang hipertonik relatif terhadap cairan dalam sel menyebabkan cairan sel keluar sehingga mengakibatkan sel mengerut.
Proses pengerutan sel seperti ini disebut krenasi. Penempatan sel darah dalam larutan yang hipotonik relatif terhadap cairan dalam sel menyebabkan cairan masuk ke dalam sel sehingga sel darah merah akan pecah. Proses ini dinamakan hemolisis. Seseorang yang membutuhkan pengganti cairan tubuh, baik melalui infus maupun meminum cairan pengganti ion tubuh harus memperhatikan konsentrasi cairan infus atau minuman. Konsentrasi cairan infus atau minuman harus isotonik dengan cairan dalam tubuh untuk mencegah terjadi krenasi atau hemolisis.
Contoh osmosis yang lain di antaranya sebagai berikut.
a. Ketimun yang ditempatkan dalam larutan garam akan kehilangan airnya akibat osmosis sehingga terjadi pengerutan;
b. Wortel menjadi lunak akibat kehilangan air karena menguap. Ini dapat dikembalikan dengan merendam wortel dalam air. Wortel akan tampak segar karena menyerap kembali air yang hilang.
2. Osmosis Balik. Proses osmosis suatu larutan dapat dihentikan. Proses osmosis juga bahkan dapat dibalikkan arahnya dengan menerapkan tekanan yang lebih besar dari tekanan osmosis larutan. Proses ini dinamakan osmosis balik. Osmosis balik berguna dalam desalinasi (penghilangan garam) air laut untuk memperoleh air tawar dan garam dapur, seperti dapat dilihat pada Gambar 1.8.
Alat desalinasi air laut melalui osmosis balik
Gambar 1.8
(a) Alat desalinasi air laut melalui osmosis balik.
(b) Alat desalinasi tersusun atas silinder-silinder yang dinamakan permeator, yang mengandung jutaan serat berongga kecil.
(c) Dengan adanya tekanan, air laut masuk ke dalam permeator dan masuk ke dalam serat berongga sehingga ion-ion garam dapat dipisahkan dari air laut.
Penerapan tekanan dari luar yang melebihi nilai π menyebabkan terjadinya osmosis balik. Pada proses desalinasi, molekul-molekul air keluar dari larutan meninggalkan zat terlarut. Membran yang dapat digunakan untuk proses osmosis balik adalah selulosa asetat. Membran ini dapat dilewati oleh molekul air, tetapi tidak dapat dilewati oleh ion-ion garam dari air laut.

Contoh Menentukan Tekanan Luar pada Proses Osmosis Balik
Air gula (C12H22O11) memiliki konsentrasi 0,5 M. Berapakah tekanan minimum yang harus diterapkan pada air gula 0,5 M untuk memisahkan gula dari pelarutnya secara osmosis balik pada 25°C?
Jawab:
Tekanan minimum adalah tekanan luar yang setara dengan tekanan osmotik larutan.
π = (0,5 mol L–1)(0,082 L atm mol–1 K–1)(298K)
π = 4,018 atm
Jadi, tekanan luar yang diperlukan agar terjadi osmosis balik harus lebih besar dari 4,018 atm. (jika tekanan luar sama dengan π, tidak terjadi osmosis balik, tetapi hanya sampaimenghentikan tekanan osmotik larutan).